NH3 is highly toxic and frequently limits fish production in intensive systems. It is also dynamic, and when it enters the aquatic system, an equilibrium is established between NH3 and ammonium (NH4+). Of the two, NH3 is far more toxic to fish, and its formation is favored by high pH (>7) and water temperature. When pH exceeds ∼8.5, any NH3 present can be dangerous. In general, a normally functioning aquatic system should contain no measurable NH3 because as soon as it enters the system, it should be removed by aerobic bacteria in the environment. Ammonia test kits do not typically measure NH3 directly but instead measure the combination of NH3 and NH4, referred to as total ammonia nitrogen (TAN). A TAN <1 mg/L is usually not cause for concern unless the pH is > 8.5. However, if the amount of NH3 is increased, an explanation should be sought. The amount of toxic NH3 present can be calculated using the TAN, pH, and water temperature. When NH3 levels exceed 0.05 mg/L, damage to gills becomes apparent; levels of 2.0 mg/L are lethal for many fish. Fish exposed to ammonia may be lethargic and have poor appetites. Acute toxicity may be suggested by neurologic signs such as spinning, disorientation and convulsions.