O.K. here is one last option, don't know how much it may smell though. maybe you could grind it up and stuff it in a ladies stocking and soak it in the tank.
A new method of controlling algae has been developed by the Centre for Aquatic Plant Management which overcomes many of these problems. This involves the application of barley straw to water and has been tested in a wide range of situations and in many countries throughout the world and has proved to be very successful in most situations with no known undesirable side-effects. It offers a cheap and environmentally acceptable way of controlling algae in water bodies ranging from garden ponds to large reservoirs, streams, rivers and lakes.
Despite the simplicity of the idea, experience has shown that there are a number of basic rules which must be followed to ensure that the straw works successfully. The purpose of this leaflet is to provide practical advice on the optimum ways of using straw.
HOW STRAW WORKS
In order to use straw effectively, it is necessary to understand something of how the process works. When barley straw is put into water, it starts to rot and during this process a chemical is released which inhibits the growth of algae. Rotting is a microbial process and is temperature dependent, being faster in summer than in winter. As a rough guide, it may take 6-8 weeks for straw to become active when water temperatures are below 10oC but only 1-2 weeks when the water is above 20oC. During this period, algal growth will continue unchecked. Once the straw has started to release the chemical it will remain active until it has almost completely decomposed. The duration of this period varies with the temperature and the form in which the straw is applied and this will be discussed in more detail later; However, as a generalization, straw is likely to remain active for approximately six months, after which its activity gradually decreases.
Although the exact mechanism by which straw controls algae has not been fully proven we believe that the process may occur as follows. When straw rots, chemicals in the cell walls decompose at different rates. Lignins are very persistent and are likely to remain and be released into the water as the other components decay. If there is plenty of oxygen available in the water, lignins can be oxidized to humic acids and other humic substances. These humic substances occur naturally in many waters and it has been shown that, when sunlight shines onto water which contains dissolved oxygen, in the presence of humic substances, hydrogen peroxide is formed. Low levels of peroxide are known to inhibit the growth of algae and experiments have shown that sustained low concentrations of hydrogen peroxide can have a very similar effect on algae to that of straw. Peroxides are very reactive molecules and will only last in water for a short time. However, when humic substances are present, peroxides will be continuously generated whenever there is sufficient sunlight. The slow decomposition of the straw ensures that humic substances are always present to catalyze this reaction. There are various factors which affect the performance of straw and which support this hypothesis. It is important to take these factors into account to ensure successful treatment of algal problems with straw.
1: Type of Straw
Barley straw works more effectively and for longer periods than wheat or
other straws and should always be used in preference to other straws. If barley is unavailable, other straws, including wheat, linseed, oil seed rape, lavender stalks and maize can be used as a substitute. The information in this leaflet describes the use of barley straw. If other straws are used, it is likely that the quantities applied and frequency of application may have to be increased. We have tested a range of barley straw varieties, including some grown organically; all these were active at the same level. Hay and green plant materials should not be used because they can release nutrients which may increase algal growth. Also they rot very rapidly and may cause de-oxygenation of the water.